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Statistical mechanics of self-driven Carnot cycles

Eric Smith
Los Alamos National Laboratory, Earth and Environmental Sciences Division, Los Alamos, New Mexico 87545

~Received 28 January 1999!

The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic
engine, are derived as properties of a second-order phase transition. It has previously been argued that this
dynamical phase transition, called ‘‘onset,’’ has an equivalent equilibrium representation, but the saturation
mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are
coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria
of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal
interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and
related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is
derived and shown to arise universally from the interaction of finite-temperature disorder, with the order
induced by self-amplification.@S1063-651X~99!03210-9#

PACS number~s!: 05.70.Jk, 43.35.1d, 05.70.Ln
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I. INTRODUCTION

Self-organizing engines form a pervasive and fascina
class of objects, but one about which little of a general nat
has been understood. These are systems in which at leas
of the work generated by an engine cycle reinforces or a
plifies the event sequence implementing the cycle. Thro
this amplification, the cycle can be spontaneously gener
from noise, so these engines are self-starting. Reinforcem
of a given cycle is also typically accompanied by the su
pression of other modes of fluctuation, so they are s
organized. Examples of such systems include weather
terns such as tornadoes and hurricanes, autocata
chemical networks, and all living things.

Many empirical features of these engines suggest
they may be controlled by the interplay of dynamics a
statistics, and in particular that the self-starting transit
may be mathematically a phase transition. While an eng
cycle can self-generate from noise, its amplification does
persist indefinitely; the driven cycle tends to saturate at so
stable rate of heat transport dependent on how strongly
system is driven. The absence of an intrinsic scale for
saturation, together with the typical existence of thresh
values for self-generation to proceed at all, are characteris
of the order parameter near a second-order critical point

On the other hand, the long-range order thus created
an event sequencein time, and the transport processes r
sponsible are explicitly nonequilibrium. Further, the eng
cycle, once selected, can often be described classically.
interesting question raised by these systems, then, is whe
statistical disorder can select such dynamical backgrou
and stabilize them even at an apparently classical level.

One way to shed light on the general problem is to th
oughly analyze a representative case. The self-starting t
moacoustic engines@1–4# are ideal examples of the gener
tion of dynamic structure, because they demonstrate a
the above properties, but offer a few important simplific
tions for analysis.

Thermoacoustic engines are resonators that spontane
generate a stable sound wave when driven by a thermal
PRE 601063-651X/99/60~4!/3633~13!/$15.00
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dient exceeding some threshold value@2#. The amplitude of
the generated mode, like a phase-transition order param
is a nonanalytic function of the temperature gradient driv
the engine, which serves as an effective coupling. For gr
ents below critical, sound fluctuations do not organize, a
the equilibrium state of the engine is quiescent. For gradie
above critical, a fundamental resonator mode of arbitr
phase ~arbitrary zero of time! spontaneously develops
stable nonzero amplitude, which grows monotonically in t
coupling, with initially infinite slope at the critical point@5#.
This crossing of the threshold for spontaneous generatio
sound is called ‘‘onset.’’ The existence, above onset, o
stable phase for the running cycle is tantamount to vanish
of the degenerate, orthogonal phase, and the arbitrary
definite zero of time thus selected spontaneously breaks
translation, a symmetry of the underlying dynamics also
pressed by the quiescent equilibrium. Onset thus has all
mathematical signatures usually identified with a phase tr
sition.

At the same time, the engine cycle can be treated cla
cally @6#, and the exponential growth of sound away from
artificially quenched~supercooled! quiescent state above on
set is well described this way@7#. The linear gain equation
describing growth cannot predict saturation, however,
whether it is statistical or deterministic in origin is no
known. It is known that saturation at small amplitudes is n
associated with either reduced transport@2# or obvious har-
monic generation or chaos@7#, making a statistical mecha
nism plausible.

The simplification afforded by these engines is that th
entire ‘‘working machinery’’ can consist of the acoust
resonance and conduction of an ideal gas. All excitatio
whether dynamical modes that can be treated classicall
thermal modes that must sum statistically, are thus phon
The absence of a fundamental distinction between the
provides a bootstrap approach—scale-invariant treatmen
all phonons—to inferring the statistical sum for the who
engine from that of the underlying finite-temperature gas

Such scale invariance has been used@8# to assign an ana
lytic structure to the effective action giving classical engi
3633 © 1999 The American Physical Society
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3634 PRE 60ERIC SMITH
dynamics—based on its assumed embedding in a fin
temperature partition function. A conformal symmetry, ma
ping time and temperature scales of ideal gas states re
by adiabatic transformations, was then used to show th
reversible thermoacoustic engine is equivalent to a syste
apparent thermal equilibrium. The two together led to
proof of Carnot’s theorem as conservation of a Noether c
rent, requiring only finite temperature, analyticity, and br
ken symmetry@9#. The emergence of a nontrivial conserv
tion law from these assumptions thus furnished evidence
residual statistical properties may remain important at
classical level.

Only the analytic properties of the classical effecti
action—hence the symmetries and conservation laws
single engine cycles—were treated in Ref.@8#. The comple-
tion of the statistical sum to include macroscopic modes w
not carried through, so spontaneous symmetry breaking,
statistical origin for the saturation amplitude, could not
shown. Those results will be derived here. Because muc
the groundwork for describing the example engine was
in the previous work, forms for relevant effective actions w
be cited there, and only reproduced when specifically use
the present calculations. The derivation is arranged as
lows.

The explicit structure of the partition function describin
the engine at the level of ideal gas dynamics, not previou
needed for the treatment of individual engine cycles, w
first be presented in Sec. II. It shows formally how the m
croscopic thermal sum, to be defined consistently, must
clude macroscopic fluctuations as well. It also shows h
the conformal symmetry of the effective dynamical action
Ref. @8# leads to an equivalent equilibrium representation

The local fluctuations that make up individual engine co
figurations are microscopic degrees of freedom, though, w
respect to the modal amplitudes that appear to have cri
behavior, so the form of the microscopic effective action
not directly useful. Therefore, the formal construct of Sec
will be coarse-grained in Sec. III, and the local gas co
straints replaced by a phenomenological constraint repres
ing the Carnot efficiency of a reversible cycle~the only kind
whose dynamics are encoded in an analytic effective acti!.
The resulting phenomenological Lagrangian is the most g
eral, consistent with the symmetries of weakly perturb
phonons and the definition of the system as an engine
expected from the formal arguments of Ref.@8# and Sec. II,
it has an analytic continuation leading to an equivale
finite-temperature Euclidean field theory in apparent ther
equilibrium. This form will then be scaled, and the cutoff o
high-frequency modes implicitly renormalized, to yield th
effective field theory in which the stationary points of th
action actually correspond to classical configurations of
system.

The only free parameter in this derivation is the value
an effective coupling, representing the strength with wh
the Carnot cycle feeds its own growth. It is not clear ho
such a value can either be derived from microphysics
inferred from direct measurements, so only the scaling of
coupling with driving gradient is derived.

The general form of the effective action is then expand
in mean-field theory in Sec. IV, and shown to lead to a n
zero current background that has an immediate interpreta
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in terms of broken time-translation symmetry in the dynam
cal sector. An analysis of fluctuations about stationary po
predicts a universal scaling for the amplitude of driven sou
in a neighborhood of the critical point, which is the same
that for the magnetization in a Ginzburg-Landau ferroma
net. The way the effective coupling appears in this form
gives a prescription for assigning it a value, if this scali
regime can be found experimentally.

The generality of these results deserves comment. Th
are two fundamental classes of thermoacoustic engines
rently known: a standing-wave~SW! engine with intrinsi-
cally irreversible dynamics@1# and a finite critical driving
gradient, and a traveling-wave~TW! engine that is reversible
in idealized limits@3,4#, with a critical point at zero gradient
The reversible TW engine is the system considered in R
@8# and here. The time-translation-breaking properties of
two onset transitions are similar, but the natures of the c
pling driving the gas, and the time-reversal symmetries
the cycles, are different.

The main conclusion of this derivation—that the local e
ponential growth of self-driven cycles saturates due to fin
temperature statistics—will clearly follow from general fe
tures of the phenomenological Lagrangian, not peculiar
the engine used as an example. However, the partic
phase structure may be different for different cycles, a
~regrettably! it will be left as an open question whether th
TW and SW onset transitions are of the same universa
class.

II. STATISTICAL REPRESENTATION OF THE
ACOUSTIC STIRLING ENGINE

A. The self-consistency bootstrap

The system considered in Ref.@8# and here is a traveling
wave engine introduced by Ceperley@3#, and shown sche-
matically in Fig. 1. It consists of an annular resonator fill
with an ideal gas, a stack of closely spaced, parallel plate
the flow stream of the gas, and two thermal reservo
coupled to heat exchangers at opposite ends of the stack
stack length will be calledd, and the resonator lengthL@d.
The resonator is assumed to admit one-dimensional flow,
the function of the stack is to enforce a constraint of ze
temperature fluctuation at each position along its length. U
der this constraint, the pressure-velocity phasing of trave
waves implements a Stirling cycle, which has Carnot e
ciency in the limit of idealized stack coupling.

FIG. 1. Schematic of the traveling-wave engine.
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The important advantage of this engine as an exam
over the more familiar and easily realized standing-wave v
sion, is that thermally induced irreversibility is not intrins
cally necessary to perform the cycle. The stack spacin
assumed much smaller than thermal boundary layers, so
fixed-temperature boundary condition it imposes on the
in the idealized limit may be modeled with a ‘‘perfect co
ductivity,’’ which simply represents the classic approxim
tion of reversible isothermal heat exchange. All other evo
tion of the gas in the engine may be idealized as adiaba
One consequence is that the idealized cycle, being revers
must have Carnot efficiency. Therefore, the classical g
@3,8# is nonzero at any driving gradient, so the critical po
for onset is classically expected to lie at zero gradient. F
mation of order is still nonanalytic, because the driven mo
is whichever traveling wave propagates in the direction
the stack gradient, so the two cases of positive and nega
gradient couple to orthogonal modes~which may be re-
garded as dual order/disorder parameters!.

The other consequence is that all necessary engine
namics, even at the microscale, is consistent with deriva
from an effective action. The reversible isothermal h
transfer may be implemented with Lagrange-multiplier co
straints, while adiabatic dynamics follows from an approp
ate free field theory. Thus, the explicit form of the effecti
action, at each scale of averaging, may be expected to
resent the essential dynamics of the engine, without requi
augmentation by irreversible terms that cannot be abso
by renormalization into the action itself.

Construction of the partition function for the whole e
gine begins by specification of the bare partition function
free phonons, and then proceeds by successive averagi
higher-frequency modes, to produce coarse-grained effec
actions for the remaining degrees of freedom. The for
used for this construction in the rest of the subsection
drawn from Ref.@8#. The finite-temperature field theory of
free phonon gas is simplest in Lagrangian coordinates:x, the
instantaneous position of a given parcel of gas in the reso
tor, is an embedding of the Lagrangian ‘‘accumulated ma
coordinatem into physical space.m is periodic moduloM,
the total mass of gas.

At fixed temperature and no stack coupling, the isoth
mal partition function is defined@10# as

Ziso5E Dxe2SE
0 [x]/\, ~1!

where\ is Planck’s constant, and

SE
0@x#[ R dt R dm

1

2S ]x

]t D 2

~2!

is the so-called Euclidean action for free massless bos
~phonons! on the domainm @11#.

t has units of time, and the system has temperatureT0
whent is made periodiodic withrdt5\/kBT0, wherekB is
Boltzmann’s constant. Low-frequency correlations of ‘‘d
namical’’ fields x̄ can be studied by splittingx5 x̄1x8, and
averaging over ‘‘thermal’’ fluctuationsx8:
e,
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Ziso5E Dx̄E Dx8 e2SE
0 [ x̄1x8]/\[E Dx̄ e2SE[ x̄;T0]/\.

~3!

‘‘Classical’’ dynamical correlations areconditional prob-
abilities for configurationsx̄, where the condition collapse
some part of the integral*Dx̄, andSE@ x̄;T0# can be used as
a classical action to gived-functionconditionedprobabilities
for the rest of the configuration~classical field configurations
from initial conditions!. The form ofSE@ x̄;T0#, constrained
by the requirement that it produce the correct equations
motion for isothermal sound, is given as Eq.~5! of Ref. @8#
~with T set toT0).

It was further shown in Ref.@8#, however, thatSE@ x̄;T0#

in Eq. ~3! can be regarded asSE@ x̄;T#, with the insertion of
15*DT d@T2T0# in the functional integral~3!, to represent
the constraint of isothermal sound explicitly. The generali
tion to adiabatic dynamics comes by simply removingd@T
2T0#, to makeT a fluctuating auxiliary field. The constrain
it enforces then becomes conservation of comoving entro

For slow fluctuations~dynamics approaching local equ
librium everywhere!, T may be taken as the conformal fact
of a coordinate transformation in whicht, as well asx̄, be-
comes an embedding field defined on a manifold oftwo La-
grangian coordinates (z,m). z is an affine parameter aroun
rdt, asm is aroundrdx. By settingrdz[T0, an arbitrary
reference temperature, the resulting adiabatic partition fu
tion is given the form of equilibrium:

Zad5E Dt Dx̄ e2SE[ t,x̄]/\, ~4!

with SE given as Eq.~14! of Ref. @8#.
Finally, the stack coupling is introduced by means

Lagrange multipliersl in a constraint actionSC , which en-
force nonfluctuating temperature at positions along the st
by fixing the conformal factor. In the partition function, th
l become auxiliary fields implementingd functionals of the
constraints, and the formal equilibrium partition function f
the whole engine becomes

Zengine5E Dt Dx̄ Dl e2(SE1SC)/\. ~5!

SC is given as Eq.~15! of Ref. @8#.
The formal existence of the representation~5! is the start-

ing point for constructing the phenomenological descript
of the TW engine. The detailed structure ofSE and SC ,
beyond the free terms of Eq.~2!, is not needed, becaus
higher modes than the fundamentals ones are not of inte
to describe the basic onset transition. The local gas dynam
also does not appear at the level of coarse-graining des
ing symmetry breaking. Only the independent fundamen
mode amplitudes need be kept as dynamical variables,
only the cycle-averaged gain relation proceeding from ana
sis of the local gas dynamics is needed to define their in
actions.
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B. Coarse-graining and the phenomenological Lagrangian

The detailed structure of the phenomenological Lagra
ian for symmetry breaking generally does not resemble
for its underlying dynamics@12#. In particular, the explicit
conformal factor for embeddingt and the local-conduction
auxiliary fieldsl in Eq. ~5! need not appear at all. Rather, th
effective theory is defined by symmetries, and the order
terms appearing in it is determined by the limit it must a
proach as a free theory.

For the TW engine, the fact that pressure and den
fluctuations remain in phase while performing the Stirli
cycle leads to particularly simple kinematics. For a sh
stack, as is usually assumed@3,4,8#, temperature and densit
fluctuations over most of the resonator~all but a length
d/L!1, where temperature does not fluctuate! remain in
phase, and velocity is determined by the equation of co
nuity, so a single real variable describes the configura
space. A dimensionless displacement potentialf ~variously
normalized! will be used here.

The engine partition function must reduce to that for fr
sound at zero stack coupling, because the gain relation
small perturbation on the resonance condition that ma
modal amplitudes well defined. Also, because]z and]t , or
]m and ]x , are the same at leading order in small fluctu
tions, and the phenomenological Lagrangian is expande
leading nontrivial order in derivatives,]t and]x may be used
to define the mode bases.

With these conventions, the two independent spatial b
functions for arbitrary fundamental-mode pressure fluct
tions areê1[cos(k0x) andê2[sin(k0x), wherek0[v0 / c̄, v0

is the resonance frequency, andc̄ the mean sound speed. I
the starting microscopic theory, an arbitrary ‘‘bare’’ phon
configuration may be expanded in real functions of tim
fR,B , f I ,B asfB5fR,Bê11f I ,Bê2. It is intuitive to replace
ê1→1, ê2→ i , and let fB→fR,B1 if I ,B be a complex-
valued scalar, so thate6 iv0t are, respectively, analytic an
antianalytic traveling waves.

The partition function for free sound is most easily co
structed by analytic continuation from the generating fu
tional of dynamic correlations. The wave equation forfR,B ,
f I ,B @as classical fields, up to a scale factor not specified
the free theory, at the internal level of Eq.~3!, or operators in
the full average#, is

~] t
21v0

2!FfR,B

f I ,B
G50. ~6!

Green’s functions for the operator~6! are generated by

z free[E DfR,B Df I ,B e2 iSfree/\, ~7!

where the combined requirement to recover Eq.~6! by varia-
tion, and for the kinetic term to continue to a mode expa
sion of Eq. ~2! in small fluctuations,dx/L[L]xfB /2p,
specifies

Sfree

\
[

1

vR
E dt

2
$~] tfR,B!21~] tf I ,B!22v0

2~fR,B
2 1f I ,B

2 !%.

~8!
-
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vR[\/L2M defines the fundamental reference frequency
the bare theory.

III. ANALYTIC CONTINUATION AND THE
EQUILIBRIUM EFFECTIVE ACTION

The finite-temperature partition function for free sound
obtained from the generating functional~7!, by considering
all correlations as analytic functions of the complex varia
z5t1 i t @10#. Rotating the contour along which the func
tional integral, and its correlations, are evaluated, gives
continuationt→ i t, with corresponding continuation of de
rivatives ] t→]z→2 i ]t . The continuation of Eq.~6! gives
the Euclidean equations of motion:

~2]t
21v0

2!FfR,B

f I ,B
G50. ~9!

The generating functional of temporal correlations cont
ues to the finite temperature partition function,z free→Zfree, in
which the dynamic action continues to the so-called ‘‘E
clidean action,’’2 iSfree→2SE

free. Denoting]t()[( ˙ ), SE
free

is given by

SE
free

\
[

1

vR
R dt

2
$ḟR,B

2 1ḟ I ,B
2 1v0

2~fR,B
2 1f I ,B

2 !%. ~10!

Equation~10! is just the Fourier transform ofSE in Eq. ~4!
with respect tom, projected onto the lowest modes, as r
quired for scale-invariantdefinitionof the partition function
defining the free-phonon theory.

The form of the perturbations that must be added to
coarse-grained free action~10! can be inferred from the
modal gain analysis in Appendix B of Ref.@8#, which in turn
follows from (SE1SC) in Eq. ~5!. The idealized acoustic
Stirling engine has Carnot efficiency and no load, so all
ergy from the TW cycle drives an in-phase amplification
the working mode. Since the stored energy is proportiona
the intensity (fR,B

2 1f I ,B
2 ) and the energy flux comes en

tirely from the TW current (fR,B] tf I ,B2f I ,B] tfR,B), the
gain equation~B17! of Ref. @8# can be expressed as

] t~fR,B
2 1f I ,B

2 !5
1

Q
~fR,B] tf I ,B2f I ,B] tfR,B!, ~11!

where

1

Q
5

1

2pg

DT

T
. ~12!

DT/T[(TH2TC)/TC in Fig. 1 is positive for gradients in
the analytic TW direction, andg[cP /cV is the ratio of iso-
baric to isochoric specific heats of the ideal gas. Since T
currents from the fundamental mode scale asv0 , 1/Q is the
fractional growth in energy per cycle passing the stack.

As it must if Eq.~5! is to have a coarse-grained form, th
temporal energy conservation relation~11! immediately con-
tinues to the Euclidean section:
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~fR,BḟR,B1f I ,Bḟ I ,B!1
1

2Q
~f I ,BḟR,B2fR,Bḟ I ,B!50.

~13!

Introducing the notation tanx[1/2Q, c[cosx, s[sinx, Eq.
~13! can be compactly represented as vanishing of a sc
constraint function of the bare fields,

CB[
@fR,B f I ,B#Fc 2s

s c GF ḟR,B

ḟ I ,B
G50, ~14!

which can be imposed on statistical correlations by inser
of the d functional,

d@CB#5NE Dl ei rdt lCB ~15!

(N is a normalization constant!, giving a candidate for the
symmetry-breaking partition function:

Z5E DfR,B Df I ,B e2SE
free/\d@CB#. ~16!

However, a more general relation, which also does
involve an auxiliary field, is obtained by regulating thed
functional to a finite width aboutCB50, in view of the finite
thermal coupling between the working fluid and the stack
is also only physically motivated to constrain low-frequen
components ofCB , because the Carnot relation is only d
fined over cycle averages. Both forms of regulation are
complished by taking

d@CB#→dgB
@ C̄B#[N~gB ,v̄ !

3E Dl e2(vR /2gB) Rdtl(12gB]t
2/v̄2)l ei rdt lCB,

~17!

for a large ‘‘bare coupling’’gB . Components ofl at fre-
quencies greater thanv̄ are suppressed in*Dl, so only the
average ofCB over a time;2p/v̄, denotedC̄B , is con-
strained to vanish. Physically, one expects thatv̄;v0 /Q,
but the detailed value need not be specified here, becau
mean-field-theory~MFT! calculations, it will only appear to-
gether with gB in an effective coupling, which is chose
phenomenologically from the dynamical equations. Co
pleting the square in Eq.~17!, and defining the normalization
N(gB ,v̄) for convenience, gives

dgB
@ C̄B#'e2(gB /2vR)rdt C̄B

2
[e2SE

int/\. ~18!

The case v̄→` recovers the instantaneous constrai
dgB

@ C̄B#→dgB
@CB#.

Adding a matrix-valued source term,

SE
src

\
52

1

vR
R dt

@fR,B f I ,B#
JF ḟR,B

ḟ I ,B
G , ~19!
lar

n

t

It

c-

in

-

:

to probe expectation values of growth and transport curre
the Carnot-constrained partition function is then defined
terms of the free Euclidean theory and the regulated c
straint:

Z@J#5E DfR,B Df I ,B e2SE[fR,B ,f I ,B ;J]/\, ~20!

with SE5SE
free1SE

int1SE
src. It is shown in Appendix A that,

though only the averaged constraintC̄B is physically required
to vanish, MFT results can be computed by substituting
more convenient, time-local constraintCB for C̄B with a com-
pensating shift of the coupling,gB→ḡB[gBv̄/L, whereL
is a high-frequency cutoff. The resulting action in Eq.~20!
then becomes

SE

\
5

1

vR
R dt

2 H @ḟR,B ḟ I ,B#F ḟR,B

ḟ I ,B
G

1v0
2@fR,B f I ,B#FfR,B

f I ,B
G

1ḡBS @fR,B f I ,B#Fc 2s

s c GF ḟR,B

ḟ I ,B
G D 2

22
@fR,B f I ,B#

JF ḟR,B

ḟ I ,B
G J . ~21!

The constraint is seen to enter at the lowest order poss
(fB

4), because it involves a total derivative]t(fR,B
2 1f I ,B

2 )
that would vanish at orderfB

2 . Further, all possible combi
nations offB and ḟB at this order contribute, and only th
relative coefficients specify this interaction as enforcing
Carnot constraint. Therefore, all the most relevant terms
represented to fourth order infB .

Equations~20! and~21! show, formally, how modal prop-
erties should be summed in a partition function with t
correct symmetries to represent an imperfect Carnot eng
However, the effective action superficially representing cl
sical field correlations is not expressed directly in terms
the same bare mode amplitudes that define the microsc
theory. Rather, classical field properties are approxima
represented in the action form, when it appears in a cu
effective-field sum, with all frequency scales referenced
the experimental scale, including the high-frequency cut
@13#. This precludes large integrals in interaction loops fro
invalidating the approximate equations of motion at tr
level, as long as the coupling is small.

At leading order, the effective-field sum is approximat
by introducing classically renormalized fields,

FfR

f I
G[Av0

vR
FfR,B

f I ,B
G , ~22!

and the corresponding renormalized couplingḡ[ḡBvR /v0.
These scale changes account for the dimension-determ
scaling of corrections from large interaction integrals. B
cause they are power-law, anomalous scaling correct
should be subleading. Further, the renormalized couplin
smaller than the bare coupling, so if the effective theory
valid at any scale, it must remain so at smaller scales.
nally, the phenomenological description of the engine p
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sented here is defined from symmmetriesa priori. As long as
the scaling to classical fields does not lead to large coupl
or untreated breaking of assumed symmetries, anoma
corrections are not meaningful in defining the effecti
theory anyway, and so will be ignored. The existence o
valid, weak-coupling expansion, with all broken symmetr
explicitly treated, will be taken after the fact as the demo
stration that this preservation of the formal structure of
partition function, with classically normalized fields, is
plausible step.

It will be convenient, from this point onward, to represe
SE as a matrix trace. In terms of renormalized fields,
defining action then becomes

SE

\
5

1

v0
R dt

2
TrH F ḟR

ḟ I
G @ḟR ḟ I #1v0

2FfR

f I
G @fR f I #

1ḡS Fc 2s

s c GF ḟR

ḟ I
G @fR f I # D 2

22JF ḟR

ḟ I
G @fR f I #J . ~23!

Setting J50 in the notation~except when it is implicitly
varied to equate expectation values of currents!, and defining
the renormalized constraintC[(v0 /vR)CB , the Euclidean
equation of motion from variation of Eq.~23! is

H 2]t
21v0

222ḡsS CF 1

21 G]t1
]tC
2s F c s

2s cG D J FfR

f I
G50.

~24!

Steady-state solutions, if such are found, have]tC50 by
definition. Further, the low-frequency dynamics of noneq
librium solutions, such as the exponential growth away fr
a supercooled quiescent state, are driven by the couplin
orders to traveling waves, and produce]tC;sC. Therefore,
if the regulated constraint term in Eq.~23! is expected to lead
to a uniform, linear-order perturbation to the free equatio
of motion ~24!, as results from the idealizedd functional, the
coupling must scale asḡusu→ḡ0 ass→0. This represents the
physical observation that coupling to the stack remain
finite perturbation on TW behavior, even as the impos
driving gradient vanishes. The limit of free sound will ari
from ḡ0→0 at any fixeds. Though finiteḡ0 requiresḡ→`
at s→0, this scaling will be shown to lead to regular, se
sible limits for all Green’s functions in the MFT calculation
~This scaling will also be motivated by a modal decompo
tion of the constraint in Appendix A.!

It is worth noting that, in steady state,C is theonly cor-
rection to the free Euclidean equations of motion. Since
interaction termFC other thanC 2, in Eq. ~21!, would give
other corrections from variation of the factorF, it follows
that Eq. ~23! is the most general functional enforcing th
Carnot constraint and nothing else. Alternatively, it is t
most general functional consistent with the maximal set
symmetries defining the engine, and thus must be the des
phenomenological Lagrangian.
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The background field structure of Eq.~23! is probed by
performing a Hubbard-Stratonovitch transformation to
move the quartic interaction term. An auxiliary fieldQ is
introduced through a normalized Gaussian integral

15E DQ e2Saux/\, ~25!

with

Saux

\
5

1

v0
R dt

2
TrH S Q2 iAḡFc 2s

s c GF ḟR

ḟ I
G @fR f I # D 2J .

~26!

Inserting Eq.~25! into the partition function~20! gives a sum
actionSE85SE1Saux of the form

SE8
\

5
1

v0
R dt

2
TrH F ḟR

ḟ I
G @ḟR ḟ I #1v0

2FfR

f I
G @fR f I #

22iAḡQFc 2s

s c GF ḟR

ḟ I
G @fR f I #

1Q2J . ~27!

Variation with respect toJ aboutJ50 in Eq. ~23!, and shift
of the auxiliary field of integration, gives

iAḡFc 2s

s c G K F ḟR

ḟ I
G @fR f I #L 5^Q&[Q0 , ~28!

which defines the background fieldQ0. Weak-coupling MFT
consists of splittingQ5Q01Q8, showing that fluctuations
Q8 may be ignored, and solving self-consistently forQ0
through its effect onf Green’s functions.

IV. STATIONARY POINTS AND FLUCTUATIONS

Solutions forQ0 will be found by assuming a given form
showing that it is consistent with the existence of station
points, and then using the symmetries ofSE8 to show that all
allowed solutions have the proposed form. It is shown
Appendix A that all constantQ0 thus found couple only to
zero-frequency constraint components from the TW sec
so differences between the use ofC and C̄ in Eq. ~23! are
invisible in MFT.

Stationary points will be assumed to lie in the sam
SO(2) subgroup of SU(2) as the constraint matrix in E
~14!:

Q05qF c8 s8

2s8 c8
G , ~29!

with the definitionsc8[cosz, s8[sinz. The f Green’s
function in Eq.~28! then takes the form
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K F ḟR

ḟ I
G @fR f I #L 5

2 iq

Aḡ
F cos~z1x! sin~z1x!

2sin~z1x! cos~z1x!
G .
~30!

To solve the self-consistency condition, one introduc
the mode expansion
l

w

d

e

s

FfR~t!

f I~t!
G5S v0 R dt D 21/2

(
n

FfR

f I
G

n

eivnt, ~31!

wherevn[2pn/rdt for bosonic Euclidean fields.
The modal solution to Eq.~28! is then
qF c8 s8

2s8 c8
G5

2Aḡv0

R dt
(

n

vn~vn
21v0

2!Fc 2s

s c G12Aḡqvn
2Fc8 2s8

s8 c8
G

Det
, ~32!
us

s

n,

-
e
n-
-

with the denominator given by

Det[@vn
21v0

212Aḡqvncos~z2x!#2

1@2Aḡqvnsin~z2x!#2. ~33!

Independent matrix coefficients of Eq.~32! may be set equa
as components of a vector:

qFc8

s8
G52Aḡv0G1F c

2sG22ḡqv0G2F c8

2s8
G . ~34!

The two independent modal Green’s functions appearing
Eq. ~34! are

G1[
1

R dt
(

n

vn~vn
21v0

2!

Det
, ~35!

G2[
1

R dt
(

n

vn
2

Det
. ~36!

These are most conveniently evaluated in a lo
temperature limit, where(n→(rdt/2p)*dv. Defining a
condensed notation for square roots that arise from the
terminant~33!,

A6[Av0
22ḡq2exp@62i ~z2x!#, ~37!

and another for a combination of these that appears rep
edly,

a[
A22A1

A21A1
, ~38!

the Green’s functions evaluate to

G1→
2Aḡq

4 S 1

A1
1

1

A2
D H 2cos~z2x!2 ia

cos 2~z2x!

sin~z2x! J ,

~39!
in

-

e-

at-

G2→
1

8 S 1

A1
1

1

A2
D $12 iacot~z2x!%. ~40!

After some algebra to simplify products of the vario
sines and cosines, Eqs.~39! and ~40! in Eq. ~34! reduce to
the eigenvalue relation

Fc8

s8
G5

ḡv0cos 2x

4 S 1

A1
1

1

A2
D ~12 iatan2x!H F1

1G
2S tan2x1 ia

12 iatan2x D F 21

1 G J Fc8

s8
G . ~41!

Simultaneous solution forz andq is easiest in the limits
of large uḡq2u/v0

2, where the only self-consistent solution
have usin 2(z2x)u!1. Taylor expanding Eq.~38! to leading
order in this small sine, irrespective of the root conventio
gives

a'
i ḡq2sin 2~z2x!

2@v0
22ḡq2cos 2~z2x!#

. ~42!

Eigenvectors of Eq.~41! with small z2x are only pos-
sible if tan2x52 ia, giving two solutions forz1x in terms
of q:

z1x'2x
v0

2

ḡq2
and cos 2~z2x!512O~x2!, ~43!

z1x'
p

2
sgn~xq2!22x

v0
2

ḡq2
and cos 2~z2x!521

1O~x2!. ~44!

To solve forq, one notes thatq2.0 leads to an imaginary
expectation value for the Green’s function~30! and a nega-
tive f4 interaction, whileq2,0 gives a real Green’s func
tion and positive interaction.~It may also be checked that th
negative interaction is large, in maximal violation of the co
straint, while the positive solution is small, in maximal com
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pliance with it. The physical interpretation of these relatio
will be remarked upon below.!

Starting from real-valued fieldsfR ,f I , the hypercontour
of steepest descents in Eq.~20! may be displaced into the
complex plane, butfR ,f I remain single-component fields
Therefore, onlyq2.0 stationary points are found. With th
signs of cos 2(z2x) from Eqs.~43! and~44!, the unique real-
q solutions at large or smallg are then given by

Aḡq'v0A12ḡ2/4; g!2 and cos 2~z2x!'1,
~45!

Aḡq'v0Aḡ2/421; g@2 and cos 2~z2x!'21.
~46!

The relative signs of square roots are determined, toge
with the angle, by the requirement that Green’s functio
continue throughḡ;2 in the same quadrant of SO(2). The
absolute sign of roots is then determined by causality a
continuation back to real-time correlations. With the roots
chosen, the Euclidean Green’s function~30! for ḡ!2 is

K F ḟR

ḟ I
G @fR f I #L →2 i

v0

2 S 2

ḡ
A12ḡ2/4F1

1G
1ḡ0 sgn~x!

~2/ḡ!2

A12ḡ2/4
F 1

21 G D ,

~47!

while the solution forḡ@2 is

K F ḟR

ḟ I
G @fR f I #L →2 i

v0

2 S ḡ0

~2/ḡ!3

A124/ḡ2
F1

1G
1sgn~x!A124/ḡ2F 1

21 G D .

~48!

Rotation back to real-time currents, via]t→ i ] t , gives the
solution for ḡ!2:

K ] tFfR

f I
G @fR f I #L→

v0

2 S 2

ḡ
A12ḡ2/4F21

21G
1ḡ0 sgn~x!

~2/ḡ!2

A12ḡ2/4
F 21

1 G D ,

~49!

and for ḡ@2:
s

er
s

r
o

K ] tFfR

f I
G @fR f I #L→

v0

2 S ḡ0

~2/ḡ!3

A124/ḡ2
F21

21G
1sgn~x!A124/ḡ2F 21

1 G D .

~50!

The importance of the way the positive-q2 solution vio-
lates the sign preferred by the constraint may now be se
The off-diagonal current in both Eqs.~49! and ~50! has a
sign corresponding to the growing solution under Eq.~11!,
but the diagonal magnitude decays thermally, as required
a causal solution. That the constraint mitigates this deca
seen by the decrease in magnitude of the diagonal term
large ḡ.

The parameterḡ selects in the same functional way b
tween the two asymptotic solutions, at whatever value ofḡ0.
However, ḡ0 remains as a dimensionless parameter de
mining the form of the solutions, and the continuation b
tween them. At smallḡ0, the transition atḡ52 resembles the
Curie point in the classical Landau description of ferroma
netism@14#, as seen in Fig. 2. Indeed, asḡ0→0, the current
Green’s functions simplify to

K ] tFfR

f I
G @fR f I #L

→v0

2 S 2

ḡ
A12ḡ2/4F21

21G D , ḡ<2

→v0

2 S sgn~x!A124/ḡ2F 21

1 G D , ḡ>2. ~51!

FIG. 2. Coefficients of independent matrix terms in the curr
expectation values. Solid black is the off-diagonal component~fluc-
tuations included!; dashed black is the diagonal component. Dott

lines areḡ0→0 limiting values given in Eq.~51!. Dash-dot line is
the s-linear limit of the tanh function in Eq.~61!.
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However, at nonzeroḡ0, this transition is always regular, an
is not the critical point relevant to the TW onset transitio
Rather, it quantifies the intuitive expectation that an insu
ciently strongly coupled stack, relative to the driving gra
ent it is asked to impose, becomes unable to sustain cohe
order.

The fact that the stationary points~49! and ~50! remain
finite and dependent on sgn(x) at x→0 (ḡ→`), where
nonzero solutions must be degenerate, motivates cons
ation of fluctuations aboutQ0 at small x. The degeneracy
and completeness of the stationary points is most easily s
ied by momentarily promotingfR ,f I to complex-valued
fields, and replacing the current dyadic above with

F ḟR

ḟ I
G @fR f I #→F ḟR

ḟ I
G @fR* f I* #

~52!

~and similarly with all other dyadics!.
Given any stationary solutionQ0, a hypersurface of val-

ues in theQ integral may be formed as

Q5RQ0R†, ~53!

by acting with a rotationRPSU(2).Decomposing generalQ
into the basis elements

Q5q0F1

1G1q1F i

2 i G1q2F 1

1 G1q3F1

21G ,
~54!

the action ofR in Eq. ~53! may be written as

F q1

q2

q3
G5RF q0

1

q0
2

q0
3
G , ~55!

for RPSO(3).
Meanwhile, a similar shift on fieldsf, f* may be per-

formed in the action~27!, replacing

F ḟR

ḟ I
G @fR* f I* #→RF ḟR

ḟ I
G @fR* f I* #

R†1O~Ṙ!, ~56!

and likewise with other dyadics. For constantR, this shift of
f fields is a symmetry of the measure, and ats50, for each
zero-frequency fluctuation ofQ in Eq. ~53!, it may be per-
formed to yield an exact symmetry of the action~27!. There-
fore, the complete spectrum of stationary points ats50 is
the image ofQ0 found above under SO(3). Nonzeros breaks
this degeneracy, and if termsO(Ṙ) are ignored in Eq.~56! at
low temperature, the remaining terms give the effective
tential for R.

Returning now to the simpler casefR ,f I real, SO(3)
breaks to SO(2)3Z2. The SO(2) factor comes fromR†

5RT, and leavesQ0 invariant.~This is just the global sym-
metry whose local form gives the Goldstone sector, beca
rotation of traveling waves in the spatial plane is equival
to offsetting the zero of time.! The residualZ2 comes from
6p/2 rotations in either of the remaining SU(2) generato
It is a symmetry of the action under the discrete transform
.
-
-
ent

er-

d-

-

se
t

.
-

tionsfR↔f I , andfR→fR , f I→2f I for the two genera-
tors, respectively. Thus for real fields, an integral over flu
tuations reduces to the discrete sum over antipodal statio
points ats;0.

Letting 2u denote the elevation angle in SO(3), or
cos(2u)561 in Z2, the effective potential may be estimate
by inserting the mean current Green’s function~30! in the
action ~27!, to yield

S8E

\
@u;s#5

S8E

\
us[02

ḡs2v0

2 R dt @11cos„2u~t!…#.

~57!

Because only the surface of fluctuations~53! is degenerate
at s50, other modes are massive and can be ignored
evaluating the expectation value,

^Q&5

E DR eḡs2v0rdt cos(2u)/2q cos~2u!

E DReḡs2v0rdt cos(2u)/2
F 1

21 G .
~58!

For complex fields andR in SO(3), themeasure would
be

E DR52pE
21

1

d cos~2u!, ~59!

while for real fields andR in Z2, it is simply

E DR5 (
cos(2u)521

1

. ~60!

The evaluation of Eq.~58! with measure~60! is

^Q&5
Aḡv0

2
sgn~x!F 1

21 G tanhS ḡs2v0

2 R dt D ~61!

@the SO(3) case differs by a prefactor and higher-or
terms#. Recognizing thatḡs2 sgn(x)5ḡ0x1O(x3), the cur-
rent Green’s function to leading order in smallx becomes

1

v0
K ] tFfR

f I
G @fR f I #L→2

ḡ0xv0rdt

4 F 1

21 G .
~62!

The auxiliary fieldQ does not directly correspond to in
dividual backgroundsfR ,f I , because SO(2) rotations tha
phase-shift traveling waves leaveQ0 invariant. However, be-
cause the leading behavior of the engine is still constrai
by the dynamics of free phonons, the interpretation of E
~62! in terms of classical real-time backgrounds is una
biguous. Finite TW currents come from allowed solutions
the form

FfR

f I
G5AFcos~v0t !

sin~v0t !
G , ~63!
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up to choice of the zero of time. Matching the current exp
tation value from such a classical background to Eq.~62!,
and recalling thatrdt5\/kBT, gives the scaling forx.0,

A'Aḡ0x

2
A\v0

kBT
. ~64!

V. DISCUSSION

Equation~64! predicts a universal scaling of the saturati
amplitude with driving gradientx near the TW critical point,
in the sense that it follows from the most relevant terms in
effective field theory of free phonons, perturbed by imperf
Carnot self-amplification. The dependence ofA on x is
manifestly nonanalytic atx50. Apart from the fact that the
critical coupling is zero, this scaling is the same as that of
averaged magnetization of a ferromagnet in the Ginzbu
Landau treatment@14#: A;Ax for x.0 and A[0 other-
wise. The amplitude of the counterpropagating wave has
actly the dual behavior, with respect to2x.

The current~proportional toA2), which couples directly
to x, is analytic throughx50, so the argument thatḡ0 ap-
proaches a constant there implies saturation proportiona
the classical gain times a fixed coupling strength. This m
be in agreement with Ref.@2#, but those data were not pre
sented to test this point.

Unfortunately, because even the scaling of the satura
amplitude near the critical point is difficult to measure, it
not clear how to assign more directly an experimental va
to the effective couplingḡ0. In the phenomenological equa
tions at the level of the local ideal gas, irreversibility is e
coded in conductivities that damp wave solutions or para
cally reduce gain. In the reversible action~23!, the only way
these can be encoded is by weakening the Carnot constr
so that not all energy extracted from the reservoirs is rep
sented by growth of sound in the engine. The relation of t
phenomenological constraint to the underlying ideal gas c
ductivities appears as difficult to derive as to measure
rectly.

It is appealing to speculate that, in spite of its form
relation to a ‘‘bare’’ coupling by a rescaling involvingv0 ,
ḡ0 is at most a function of stack properties and temperat
In that case, sincev0 can be varied independently by varyin
resonator lengthL, the saturation current would be propo
tional to \v0 /kT, the ratio of the number of driving engin
cycles per unit time, to the thermal decay rate. It may also
noted that atḡ0→0, fluctuations suppresŝQ& at all s, and
the free theory is recovered.

If the scaling regime withDT predicted by Eq.~64! could
be found experimentally, the effective coupling would th
be determined by the coefficient as a function ofT. A diffi-
culty with this is that experiments are only currently feasib
on the SW critical point, as in Ref.@2#, and the symmetry-
based calculations above are too limited to show whether
TW critical point should have the same scaling. It is the
fore of interest experimentally to pursue engines that
drive traveling waves, and theoretically, to extend the pha
transition interpretation from the relatively natural reversib
case, to include the SW cycle as well.
-
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A final comment concerns the relation of the backgrou
current~62! to the selection of a definite phase for classic
backgrounds~63!. In a ferromagnetic spin system, there are
large number of microscopic spins, which need not be pha
coherent to produce a background magnetization. Un
coarse-graining, they are replaced with a classical magn
zation vector, which is independent of those phases. In
acoustic resonator, the current is still constructed explic
from wave solutions, but there is only one ‘‘spin.’’ Possib
ground states all have expectation values which are lin
combinations of the two independent temporal modes~dif-
fering by thep/2 phase!, and any such state may be rotat
to the form ~63! by appropriate choice of the zero of time
Therefore, formation of a background current requires a s
over independent ground states with definite phases. In c
sical correlations, these are engine cycles that spontaneo
break time-translation symmetry, and create long-range
namical correlations with the field configurations at any o
time.

VI. CONCLUSIONS

The foregoing derivation took as input a set of effecti
actions from Ref.@8#, which have already been shown to lea
to an intriguing connection between Carnot’s theorem a
the analytic structure derived from finite-temperature su
mation of classical configurations. Through explicit formul
tion, and then coarse-graining, of the sum, the same act
and analyticity have been shown to lead to spontaneous s
metry breaking and finite-amplitude saturation of the driv
sound mode.

The notion that finite-temperature disorder could sel
among, and then stabilize, such classical configuratio
would be implausible, except that exact degeneracy of
thogonal engine modes is strictly enforced by tim
translation invariance of the underlying dynamics. In t
equilibrium representation, phase drift among these mo
would be the Goldstone excitation of the theory. It appe
that the mechanism by which thermal disorder causes fin
amplitude saturation is diffusion of the work extracted fro
existing cycles, over the most accessible states, which sh
be visible as phase meandering dynamically@15#. Near the
critical point, the saturation of such phase noise should
the mechanism that ‘‘melts’’ the dynamical long-range ord
of a coherent engine cycle. The measurement and predic
of the spectra of phase noise in close neighborhoods of o
are therefore important directions for experimental and t
oretical future work.
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APPENDIX A: THE AVERAGED CONSTRAINT AND
SCALING OF THE COUPLING

The idealizedd functional ~15! is linear in the constraint
it enforces. When the regulatorsgB ,v̄ are introduced in Eq.
~17!, this linear functional is replaced with a quadratic inte
action termSE

int/\, in Eq. ~18!. In order for the regulator to
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enforce vanishing of the low-frequency components ofCB
uniformly ass→0, it should effectively lead to a linear con
straint term withs-invariant weight. A mode expansion o
the interaction will be used here to show that this physi
condition requires scaling of the assumed ‘‘bare’’ coupli
with s. The result will then be shown to admit substitution
the local constraint for the derivation of mean-field bac
grounds, if the effective coupling is corrected by an ad
tional scale factor.

The derivation is carried out in the renormalized fields
Eq. ~22!, and the corresponding constraintC of Eq. ~24!, to
match the bulk of the main text. Translation from the ba
quantities of Sec. III is by simple rescaling. It is also conv
nient at this point to denote the rotation matrix

Fc 2s

s c G[Rs .

Only f bilinears, near-diagonal in a TW basis, contribute
the time-averaged constraintC̄, so it is useful to expandf in
TW mode coefficients,

FfR~t!

f I~t!
G5S v0 R dt D 21/2

(
n

S fn

2 F 1

2 i Geivnt

1
fn*

2 F1

i Ge2 ivntD , ~A1!

in favor of the generic expansion~31!. Positivevn represent
analytic traveling waves, and negativevn are antianalytic.
Modes ofC will be normalized as in Eqs.~31! and ~A1!:

C~t!5S v0 R dt D 21/2

(
k

Ck eivkt. ~A2!

With these definitions,

Ck5S v0 R dt D 21/2

(
n

fnfn2k* S ivk

4
e2 ix2

vns

2 D .

~A3!

The modes of the local and time-averaged constraints re
as C̄k'Ck for uvku!v̄;v0 /Q and C̄k'0 for uvku>v̄. Scal-
ing of bilinears inf is determined at leading order by th
free finite-temperature theory, so the magnitude ofC̄k is de-
termined by the two frequency coefficients that appear in
~A3!. The left-hand term in parentheses scales asuvku<v̄
;v0s, and the right-hand term scales explicitly asvns.
Therefore,C̄ is O(s), and the coefficient ofC̄k in the mode
expansion ofSE

int/\,

~gBvR /v0!

2v0
R dt C̄25

1

2v0
2 (

k
S gBvRC̄2k

v0
D C̄k , ~A4!

remains nontrivial and uniform ass→0, only if gBusu
→gB,0 .

Though this scaling appears singular~especially when ap-
plied to the local constraint for MFT calculations!, as long as
gB,0 remains small, the weak-coupling expansion is valid
all interacting fluctuations in the original definition. Th
l

-
-

f

e
-

te

q.

r

strongly coupled interactions would all be standing wav
and counter propagating traveling waves, which are
present in the time-averaged constraint.

To see that the assumption of the averaged constrain
the definitions is consistent with use of the local constrain
MFT calculations, it is then convenient to return to the mo
expansion~31!, in terms of which

Ck5S v0 R dt D 21/2

TrH Rs(
n

ivnFfR

f I
G

n

@fR f I #2n1kJ .

~A5!

Even though it is not time local, the constraint action~A4!
can be canceled explicitly by defining a two-index auxilia
field,

Q̃n,n82k[Qn,n82k

1AgBvR /v0

v0rdt
RsvnFfR

f I
G

n

@fR f I #2n81k
,

~A6!

and replacing the action~26! with the expansion

Saux

\
5

1

2v0
2 (

n n8
(

k small
Tr$Q̃n,n82kQ̃n8,n1k%, ~A7!

where finitev̄ has been represented by truncating the ra
of k summation. The sum of interaction and auxiliary fie
actions is then

Saux1SE
int

\
5

1

2v0
2 (

k small
(
n8 n

Tr

3H Qn,n82kQn8,n1k

12AgBvR /v0

v0rdt
Qn8,n1kRsvn

3FfR

f I
G

n

@fR f I #k2n8J . ~A8!

Equation~A7! cannot represent any product of time-loc
fields, as it must cancel a product of time-averaged c
straints. However, assuming a time-independent mean-
background remains consistent, and may be applied to mo
~A6! as

Qn,n82k5S v0rdt

(
k small

(
n

D 1/2

Q0dn,n82k1Q8n,n82k .

~A9!
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To zero order in fluctuations, the terms of Eq.~A8! that
survive are

Saux1SE
int

\
5

1

2v0
2
TrH S v0 R dt DQ0

2

12AḡQ0Rs(
n

vnFfR

f I
G

n

@fR f I #2nJ
1O~Q8!, ~A10!

where the sum onn is unrestricted, but a new coupling has
been defined to absorb a redundant sum onk:

ḡ[gB

vR

v0

(
k small

(
n

'gB

vR

v0

v̄

L
, ~A11!

whereL is the frequency cutoff defining the effective theor
If the local constraint had been assumed from the beginn
by raisingv̄ so that(k small→(n , ḡ would manifestly return
to the classically renormalized, bare coupling. Removing
classical scale factor to identify the couplingḡB5ḡv0 /vR

that appears in Eq.~21!, one recoversḡB5gBv̄/L.
The relation to the time-local Hubbard-Stratonovitch fie

of Sec. III may be seen by taking the mode expansion

Q~t!5S v0 R dt D 21/2

(
k

Qk eivkt[Q01Q8~t!.

~A12!

Starting from the expansion for the local interaction ter
but with a rescaled coupling,

ḡ

2v0
R dtS @fR f I #

RsF ḟR

ḟ I
G D 2

5
ḡ

2v0
3rdt

(
m,n,k8

S ivn

@fR f I #k82nRsFfR

f I
G

n
D

3S ivm

@fR f I #2k82m
RsFfR

f I
G

m
D , ~A13!
.

th
ite
e

m
th
g,

e

,

shifting indicesk5n2m2k8 to produce the tensor form,

ḡ

2v0
R dtS @fR f I #

RsF ḟR

ḟ I
G D 2

5
ḡ

2v0
3rdt

(
m,n,k

TrH S ivnRsFfR

f I
G

n

@fR f I #k2nD
3S ivmRsFfR

f I
G

m

@fR f I #2k2mD J , ~A14!

and offsetting a time-localQ by all modes off as the modes
of the field appearing squared in Eq.~26!,

Q̃k[Qk1A ḡ

v0rdt
Rs(

m
S vmFfR

f I
G

m

@fR f I #k2mD ,

~A15!

gives the equation corresponding to Eq.~A8!:

Saux1SE
int

\
5

1

2v0
2 (

k
TrH QkQ2k12A ḡ

v0rdt
QkRs(

n
vn

3FfR

f I
G

n

@fR f I #k2nJ . ~A16!

The MFT condition~A9! for the constant mode gives th
relative normalizationQk5(v0rdt)1/2Q0dk01Qk8 , leading
again to Eq.~A10!. This sequence of mode expansions c
responds to the manipulations of the everywhere-local ac
~21! carried out in Sec. III. Though it is not compatibleas a

definition with the scaling ofḡ required to model the TW
engine, the resulting MFT is the same as that obtained fr

the valid weak-coupling expansion induced byC̄.
he
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