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Statistical mechanics of self-driven Carnot cycles
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The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic
engine, are derived as properties of a second-order phase transition. It has previously been argued that this
dynamical phase transition, called “onset,” has an equivalent equilibrium representation, but the saturation
mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are
coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria
of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal
interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and
related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is
derived and shown to arise universally from the interaction of finite-temperature disorder, with the order
induced by self-amplificatior{.S1063-651X99)03210-9

PACS numbg(s): 05.70.Jk, 43.35:d, 05.70.Ln

[. INTRODUCTION dient exceeding some threshold va[@. The amplitude of
the generated mode, like a phase-transition order parameter,
Self-organizing engines form a pervasive and fascinatings a nonanalytic function of the temperature gradient driving
class of objects, but one about which little of a general natur¢he engine, which serves as an effective coupling. For gradi-
has been understood. These are systems in which at least partts below critical, sound fluctuations do not organize, and
of the work generated by an engine cycle reinforces or amthe equilibrium state of the engine is quiescent. For gradients
plifies the event sequence implementing the cycle. Througlbove critical, a fundamental resonator mode of arbitrary
this amplification, the cycle can be spontaneously generateghase (arbitrary zero of timg spontaneously develops a
from noise, so these engines are self-starting. Reinforcemestable nonzero amplitude, which grows monotonically in the
of a given cycle is also typically accompanied by the sup-coupling, with initially infinite slope at the critical poifb].
pression of other modes of fluctuation, so they are self-This crossing of the threshold for spontaneous generation of
organized. Examples of such systems include weather pasound is called “onset.” The existence, above onset, of a
terns such as tornadoes and hurricanes, autocatalyt&table phase for the running cycle is tantamount to vanishing
chemical networks, and all living things. of the degenerate, orthogonal phase, and the arbitrary but
Many empirical features of these engines suggest thalefinite zero of time thus selected spontaneously breaks time
they may be controlled by the interplay of dynamics andtranslation, a symmetry of the underlying dynamics also ex-
statistics, and in particular that the self-starting transitionpressed by the quiescent equilibrium. Onset thus has all the
may be mathematically a phase transition. While an enginenathematical signatures usually identified with a phase tran-
cycle can self-generate from noise, its amplification does nagition.
persist indefinitely; the driven cycle tends to saturate at some At the same time, the engine cycle can be treated classi-
stable rate of heat transport dependent on how strongly theally [6], and the exponential growth of sound away from an
system is driven. The absence of an intrinsic scale for thigrtificially quenchedsupercoolefiquiescent state above on-
saturation, together with the typical existence of thresholdset is well described this wajy’]. The linear gain equation
values for self-generation to proceed at all, are characteristiadescribing growth cannot predict saturation, however, so
of the order parameter near a second-order critical point. whether it is statistical or deterministic in origin is not
On the other hand, the long-range order thus created is &nown. Itis known that saturation at small amplitudes is not
an event sequenda time and the transport processes re-associated with either reduced transg@it or obvious har-
sponsible are explicitly nonequilibrium. Further, the enginemonic generation or chad§], making a statistical mecha-
cycle, once selected, can often be described classically. Thasm plausible.
interesting question raised by these systems, then, is whether The simplification afforded by these engines is that their
statistical disorder can select such dynamical backgroundgntire “working machinery” can consist of the acoustic
and stabilize them even at an apparently classical level. resonance and conduction of an ideal gas. All excitations,
One way to shed light on the general problem is to thor-whether dynamical modes that can be treated classically or
oughly analyze a representative case. The self-starting thethermal modes that must sum statistically, are thus phonons.
moacoustic engingdl—4] are ideal examples of the genera- The absence of a fundamental distinction between the two
tion of dynamic structure, because they demonstrate all gfrovides a bootstrap approach—scale-invariant treatment of
the above properties, but offer a few important simplifica-all phonons—to inferring the statistical sum for the whole
tions for analysis. engine from that of the underlying finite-temperature gas.
Thermoacoustic engines are resonators that spontaneously Such scale invariance has been uggdo assign an ana-
generate a stable sound wave when driven by a thermal gréytic structure to the effective action giving classical engine
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dynamics—based on its assumed embedding in a finite-
temperature partition function. A conformal symmetry, map-
ping time and temperature scales of ideal gas states related
by adiabatic transformations, was then used to show that a
reversible thermoacoustic engine is equivalent to a system in
apparent thermal equilibrium. The two together led to a
proof of Carnot’s theorem as conservation of a Noether cur-
rent, requiring only finite temperature, analyticity, and bro-
ken symmetnf9]. The emergence of a nontrivial conserva-
tion law from these assumptions thus furnished evidence that
residual statistical properties may remain important at the
classical level.

Only the analytic properties of the classical effective FIG. 1. Schematic of the traveling-wave engine.
action—hence the symmetries and conservation laws of
single engine cycles—were treated in R&|. The comple- i terms of broken time-translation symmetry in the dynami-
tion of the statistical sum to include macroscopic modes waga| sector. An analysis of fluctuations about stationary points
not carried through, so spontaneous symmetry breaking, or gredicts a universal scaling for the amplitude of driven sound
statistical origin for the saturation amplitude, could not bejn a neighborhood of the critical point, which is the same as
shown. Those results will be derived here. Because much Qﬁat for the magnetization in a Ginzburg_Landau ferromag_

the groundwork for describing the example engine was laithet. The way the effective coupling appears in this formula
in the previous work, forms for relevant effective actions will gives a prescription for assigning it a value, if this Sca”ng

be cited there, and only reproduced when specifically used ifegime can be found experimentally.

the present calculations. The derivation is arranged as fol- The generality of these results deserves comment. There
lows. are two fundamental classes of thermoacoustic engines cur-
The explicit structure of the partition function describing rently known: a standing-wavéSW) engine with intrinsi-
the engine at the level of ideal gas dynamics, not previouslyally irreversible dynamic$1] and a finite critical driving
needed for the treatment of individual engine CyCleS, Wi"gradient’ and atraveiing-wa\(§W) engine that is reversible
first be presented in Sec. II. It shows formally how the mi-in idealized limits[3,4], with a critical point at zero gradient.
croscopic thermal sum, to be defined consistently, must inThe reversible TW engine is the system considered in Ref.
clude macroscopic fluctuations as well. It also shows howg] and here. The time-translation-breaking properties of the
the conformal symmetry of the effective dynamical action intwo onset transitions are similar, but the natures of the cou-
Ref. [8] leads to an equivalent equilibrium representation. pling driving the gas, and the time-reversal symmetries of
The local fluctuations that make up individual engine con—the cycles, are different.
figurations are microscopic degrees of freedom, though, with  The main conclusion of this derivation—that the local ex-
respect to the modal amplitudes that appear to have criticgdonential growth of self-driven cycles saturates due to finite-
behavior, so the form of the microscopic effective action istemperature statistics—uwill clearly follow from general fea-
not direCtly useful. Therefore, the formal construct of Sec. ”tures of the phenomeno|ogicai Lagrangian, not pecu”ar to
will be coarse-grained in Sec. I, and the local gas conthe engine used as an example. However, the particular
straints replaced by a phenomenological constraint represemfhase structure may be different for different cycles, and
ing the Carnot efficiency of a reversible cyctee only kind  (regrettably it will be left as an open question whether the

whose dynamics are encoded in an analytic effective actionTw and SW onset transitions are of the same universality
The resulting phenomenological Lagrangian is the most gerg|ass.

eral, consistent with the symmetries of weakly perturbed
phonons and the definition of the system as an engine. As
expected from the formal arguments of Rgf] and Sec. II, Il. STATISTICAL REPRESENTATION OF THE
it has an analytic continuation leading to an equivalent, ACOUSTIC STIRLING ENGINE
finite-temperature Euclidean field theory in apparent thermal
equilibrium. This form will then be scaled, and the cutoff on
high-frequency modes implicitly renormalized, to yield the  The system considered in R¢8] and here is a traveling-
effective field theory in which the stationary points of the wave engine introduced by Ceperlg€§], and shown sche-
action actually correspond to classical configurations of thematically in Fig. 1. It consists of an annular resonator filled
system. with an ideal gas, a stack of closely spaced, parallel plates in
The only free parameter in this derivation is the value ofthe flow stream of the gas, and two thermal reservoirs
an effective coupling, representing the strength with whichcoupled to heat exchangers at opposite ends of the stack. The
the Carnot cycle feeds its own growth. It is not clear howstack length will be called, and the resonator length>d.
such a value can either be derived from microphysics oifhe resonator is assumed to admit one-dimensional flow, and
inferred from direct measurements, so only the scaling of théhe function of the stack is to enforce a constraint of zero
coupling with driving gradient is derived. temperature fluctuation at each position along its length. Un-
The general form of the effective action is then expandedler this constraint, the pressure-velocity phasing of traveling
in mean-field theory in Sec. IV, and shown to lead to a nonwaves implements a Stirling cycle, which has Carnot effi-
zero current background that has an immediate interpretatiociency in the limit of idealized stack coupling.

A. The self-consistency bootstrap
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The important advantage of this engine as an example, _ o— _ —
over the more familiar and easily realized standing-wave ver- Z'SOZJ DXJ Dx’ e Seltx ]/hEJ Dx e SelTol'%,
sion, is that thermally induced irreversibility is not intrinsi- (3)
cally necessary to perform the cycle. The stack spacing is
assumed much smaller than thermal boundary layers, so the o _ . .
fixed-temperature boundary condition it imposes on the g;;asClaSS'Cal dynamical cczrelatlons areonditional prob-
in the idealized limit may be modeled with a “perfect con- abilities for configuration, where the condition collapses
ductivity,” which simply represents the classic approxima-some part of the integrdlDx, andSg[x;T] can be used as
tion of reversible isothermal heat exchange. All other evolu-a classical action to givé-function conditionedprobabilities
tion of the gas in the engine may be idealized as adiabatidor the rest of the configuratioftlassical field configurations
One consequence is that the idealized cycle, being reversiblgom initial conditions. The form of Se[x; To], constrained
must have Carmot efficiency. Therefore, the classical gaifpy the requirement that it produce the correct equations of
[3.8] is nonzero at any driving gradient, so the critical point \tion for isothermal sound, is given as E§) of Ref.[8]
for onset is classically expected to lie at zero gradient. Forgyith T set toT,).

mation of order is s_tlll nonanalytic, becaus_e the dr_lven_mode It was further shown in Ref8], however, thaSE[;;To]

is whichever traveling wave propagates in the direction of = i . )

the stack gradient, so the two cases of positive and negativ@ EQ: (3) can be regarded &&[x;T], with the insertion of

gradient couple to orthogonal modéwhich may be re- 1=J/DT JT—To] in the functional integral3), to represent

garded as dual order/disorder parameters the constr_alnt qf |sotherr_nal sound expl|(_:|tly. The generahza—
The other consequence is that all necessary engine d{ion to adiabatic dynamics comes by simply removisig

namics, even at the microscale, is consistent with derivatior Tol, to makeT a fluctuating auxiliary field. The constraint

from an effective action. The reversible isothermal heatt €nforces then becomes conservation of comoving entropy.

transfer may be implemented with Lagrange-multiplier con- ~ For slow fluctuationgdynamics approaching local equi-

straints, while adiabatic dynamics follows from an appropri-librium everywherg, T may be taken as the conformal factor

ate free field theory. Thus, the explicit form of the effective of a coordinate transformation in which as well asx, be-

action, at each scale of averaging, may be expected to regomes an embedding field defined on a manifoldwd La-

resent the essential dynamics of the engine, without requiringrangian coordinates/(m). ¢ is an affine parameter around

augmentation by irreversible terms that cannot be absorbefdr, asm is aroundfdx. By settingfd{=T,, an arbitrary

by renormalization into the action itself. reference temperature, the resulting adiabatic partition func-
Construction of the partition function for the whole en- tion is given the form of equilibrium:

gine begins by specification of the bare partition function for

free phonons, and then proceeds by successive averaging of B

higher-frequency modes, to produce coarse-grained effective Zad— f DrDx e Sel™X/h (4)

actions for the remaining degrees of freedom. The forms

used for this construction in the rest of the subsection are

drawn from Ref[8]. The finite-temperature field theory of a with S¢ given as Eq(14) of Ref.[8].

free phonon gas is simplest in Lagrangian coordinatethe Finally, the stack coupling is introduced by means of

instantaneous position of a given parcel of gas in the resona-agrange multipliers\ in a constraint actiofs., which en-

tor, is an embedding of the Lagrangian “accumulated mass’force nonfluctuating temperature at positions along the stack

coordinatem into physical spacem is periodic moduloM, by fixing the conformal factor. In the partition function, the

the tOt{v\' mass of gas. _ _ \ become auxiliary fields implementingfunctionals of the
At fixed temperature and no stack coupling, the isotherconstraints, and the formal equilibrium partition function for
mal partition function is definefll0] as the whole engine becomes
Ziso:f Dxe—s‘é[x]/ﬁ' 1)
Zenone- f DrDx D\ e (Se+Slh, (5)

where?: is Planck’s constant, and
Sc is given as Eq(15) of Ref.[8].
) The formal existence of the representatiéhis the start-
Lxj= % dr § dml( ﬁ) @ ing point for constructing the phenomenological description
2\ dr of the TW engine. The detailed structure 8f and S¢,
beyond the free terms of Eq2), is not needed, because
. ) ) higher modes than the fundamentals ones are not of interest
is the so-called Euclidean action for free massless bosong gescribe the basic onset transition. The local gas dynamics
(phonons on the domairm [11]. also does not appear at the level of coarse-graining describ-
7 has units of time, and the system has temperalyre ing symmetry breaking. Only the independent fundamental
when 7 is made periodiodic witlfdr=7/kgTo, wherekg is  mode amplitudes need be kept as dynamical variables, and
Boltzmann’s constant. Low-frequency correlations of “dy- only the cycle-averaged gain relation proceeding from analy-
namical” fieldsx can be studied by splitting=x+x', and  sis of the local gas dynamics is needed to define their inter-
averaging over “thermal” fluctuations’: actions.
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B. Coarse-graining and the phenomenological Lagrangian wr=%h/L?M defines the fundamental reference frequency of

The detailed structure of the phenomenological Lagrangthe bare theory.
ian for symmetry breaking generally does not resemble that
for its underlying dynamic$12]. In particular, the explicit . ANALYTIC CONTINUATION AND THE
conformal factor for embedding and the local-conduction EQUILIBRIUM EFFECTIVE ACTION
auxiliary fields\ in Eq. (5) need not appear at all. Rather, the
effective theory is defined by symmetries, and the order of The finite-temperature partition function for free sound is
terms appearing in it is determined by the limit it must ap-obtained from the generating functiond), by considering
proach as a free theory. all correlations as analytic functions of the complex variable
For the TW engine, the fact that pressure and densitg="t+i7 [10]. Rotating the contour along which the func-
fluctuations remain in phase while performing the Stir”ngtional integral, and its correlations, are evaluated, gives the
cycle leads to particularly simple kinematics. For a shortcontinuationt—i7, with corresponding continuation of de-
stack, as is usually assumfg14,8], temperature and density fivatives ¢;—d,——id.. The continuation of Eq(6) gives
fluctuations over most of the resonattll but a length the Euclidean equations of motion:
d/L<1, where temperature does not fluctyatemain in
phase, and velocity is determined by the equation of conti- 5 drB
nuity, so a single real variable describes the configuration (—d7+ wp)
space. A dimensionless displacement potengidlvariously '8

normalized will be used here. The generating functional of temporal correlations contin-
The engine partition function must reduce to that for free generating -mp C fee  Sfree :
es to the finite temperature partition functigfi®®— z¢ in

sound at zero stack coupling, because the gain relation is &S . . . .

small perturbation on the resonance condition that make\gl_hICh the Qyn?m!cfzgtlon cfzztmues t'o the so—galle(fjreeEu—

modal amplitudes well defined. Also, becauseanda,, or ~ clidean action,”—iS™* —Sg™. Denotingd.()=( ), Sg

9, and d,, are the same at leading order in small fluctua-iS given by

tions, and the phenomenological Lagrangian is expanded to

leading nontrivial order in derivatives, andd, may be used sfee 1 rdr . P, ) o )

to define the mode bases. T on S {Pret diptwoldret dip)l (10
With these conventions, the two independent spatial basis

functions for arbitrary fundamental-mode pressure ﬂucwa_Equation(lO) is just the Fourier transform d in Eq. (4)

tions aree; = cosfpx) ande;=sin(kx), whereko=wo/C, @o  \jith respect tom, projected onto the lowest modes, as re-
is the resonance frequency, andhe mean sound speed. In quired for scale-invariandefinition of the partition function
the starting microscopic theory, an arbitrary “bare” phonondefining the free-phonon theory.
configuration may be expanded in real functions of time The form of the perturbations that must be added to the
bres i s aS¢B:¢R,Bé1+ d’I,BéZ- It is intuitive to replace coarse-gr_ained fre_e_ actio(l0) can be inferreq fr_om the
el -1, e,—i, and let dg—drp+id s be a complex- modal gain analysis in Appendlx B of RgEB], vyh|ch in turn
valued scalar, so tha™ “o are, respectively, analytic and follows from (Se+Sc) in Eq. (5). The idealized acoustic
antianalytic traveling waves. Stirling engine has Carnot_efflmen(_:y and no Ioad_,_so _aII en-
The partition function for free sound is most easily con-€r9y from the TW cycle drives an in-phase amplification of
structed by analytic continuation from the generating func-"€ working moge. Since the stored energy is proportional to
tional of dynamic correlations. The wave equationdgrg,  (h€ intensity @rs+ ¢ig) and the energy flux comes en-
#, & [as classical fields, up to a scale factor not specified bjirely from the TW current $ggdid) g~ ¢1 gdibrs), the
the free theory, at the internal level of @), or operators in  9ain equatior(B17) of Ref. [8] can be expressed as
the full averagg is

=0. 9

1
(4 0d) PrB 0 ©) 3t(¢2R,B+¢|2,B):6(¢R,B'9t¢|,8_¢|,B(9t¢R,B). (11)
t T Wo =v.
¢I,B
here
Green'’s functions for the operat() are generated by W

1 1 AT

_ i freg - —_
§freeEfD¢R,BD¢|,Be ST (7 Q 2wy T° (12)

where the combined requirement to recover @y by varia-  AT/T=(Ty—Tc)/Tc in Fig. 1 is positive for gradients in

tion, and for the kinetic term to continue to a mode expanthe analytic TW direction, ang=cp/cy is the ratio of iso-

sion of Eqg.(2) in small fluctuations,éx/L=Ldy¢g/2m,  baric to isochoric specific heats of the ideal gas. Since TW

specifies currents from the fundamental mode scalavgs 1/Q is the

oo fractional growth in energy per cycle passing the stack.

S _ 1 J’ dt 2, 2_ 2042 4 2 As it must if Eq.(5) is to have a coarse-grained form, the

o wg ?{(ﬁt(ﬁR*B) (01 )"~ wo( $rat i p)}- temporal energy conservation relaticii) immediately con-
(8) tinues to the Euclidean section:
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. _ 1 . . to probe expectation values of growth and transport currents,
(PrpePrBT ¢I,B¢I,B)+ﬁ(¢I,B¢R,B_¢R,B¢I,B):O- the Carnot-constrained partition function is then defined in
(13) terms of the free Euclidean theory and the regulated con-

straint:

Introducing the notation tgn=1/2Q, c=cosy, s=siny, Eq.

(13) can be compactly represented as vanishing of a scalar Z[J]ZJ DgrpDepyge ElPre el (20)
constraint function of the bare fields, A

_ with Sg=SI*e+ g+ S5, It is shown in Appendix A that,
drB though only the averaged constrailatis physically required

{ lzo- (14 to vanish, MFT results can be computed by substituting the

$18 more convenient, time-local constra®y for Cg with a com-

which can be imposed on statistical correlations by insertiopensating shift of the couplingig—gs=ggw/A, where A
of the & functional, is a high-frequency cutoff. The resulting action in Eg0)

then becomes

c -s
CBE[Q"R,B </’|,B]S )

6[cB]=Nf D) ef47Me (15 Se_1 j[; 47| [grs 6] PR
hoowg ] 2 bi6
(W is a normalization constantgiving a candidate for the
symmetry-breaking partition function: +w2[¢R,B ¢1,8]| $rB
0 d)l,B
_ ofreg, .
2= | Poeorspe ac) a9 —([gre iellc —s {‘%BDZ
+0dg ' ' .
s ¢
However, a more general relation, which also does not $18
involve an auxiliary field, is obtained by regulating tlée ¢
functional to a finite width aboufz=0, in view of the finite —2[¢R‘B d)"B]J ) RE . (21
thermal coupling between the working fluid and the stack. It D18

is also only physically motivated to constrain. Iow-frequencyThe constraint is seen to enter at the lowest order possible
c_omponents of’g, because the Carnot relation is only de- (¢§), because it involves a total derivati\ﬁe(qsé B+¢|2 5)
fined over cycle averages. Both forms of regulation are aCat would vanish at orde:ﬁzB. Further, all possible combi-

complished by taking nations of¢g and ¢ at this order contribute, and only the
_ _ relative coefficients specify this interaction as enforcing the
8[Cel— 8y [Cal=Mge ., w) Carnot constraint. Therefore, all the most relevant terms are
represented to fourth order g .
XJ Dh e*(wR/ZQB);edm(l—gBaf/B))\ oi$07AC Equations(ZO) and(21) shqw, formajl_y, how mpdal prop-
' erties should be summed in a partition function with the

correct symmetries to represent an imperfect Carnot engine.
17 However, the effective action superficially representing clas-
. - sical field correlations is not expressed directly in terms of
for a large “"bare cogplmg 9s. Components oh at fre- the same bare mode amplitudes that define the microscopic
quencies greater tham are suppressed ifiD\, so only the  theory. Rather, classical field properties are approximately
average ofCz over a time~2m/w, denotedCg, is con-  represented in the action form, when it appears in a cutoff
strained to vanish. Physically, one expects tEatwO/Q, effective-field sum, with all frequency scales referenced to

but the detailed value need not be specified here, because fi€ experimental scale, including the high-frequency cutoff

mean-field-theoryMFT) calculations, it will only appear to- ! 3l. .Thi.s precludes Iarg_e integrals ir_1 interactionlloops from

gether withgg in an effective coupling, which is chosen :nva:|dat|rllg the akp‘)proxmlgte _equatlclins of motion at tree
. e . evel, as long as the coupling is small.

phenomenologically from the dynamical equations. Com- At leading order, the effective-field sum is approximated

pleting_the square in Eq17), and defining the normalization by introducing classically renormalized fields,

Mdg,w) for convenience, gives
¢R _ /& ¢R,B
ol wR| ¢ B

and the corresponding renormalized couplgvgggwr/ wg.

_ These scale changes account for the dimension-determined

g, [ Cgl— 8 [ Ca]. scaling of corrections from large interaction integrals. Be-
Adding a matrix-valued source term, cause they are power-law, anomalous scaling corrections
should be subleading. Further, the renormalized coupling is

smaller than the bare coupling, so if the effective theory is

, (199  valid at any scale, it must remain so at smaller scales. Fi-
nally, the phenomenological description of the engine pre-

: (22

— 2 int
598[68]%e—(gB/ZwR)gsdchEe— sg‘/h_ (18)

The case w—% recovers the instantaneous constraint:

T

1 [bre ¢ 8] JVR,B

1,.B
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sented here is defined from symmmetigsriori. As long as The background field structure of E@®3) is probed by
the scaling to classical fields does not lead to large couplingperforming a Hubbard-Stratonovitch transformation to re-
or untreated breaking of assumed symmetries, anomalousove the quartic interaction term. An auxiliary fie@@ is
corrections are not meaningful in defining the effectiveintroduced through a normalized Gaussian integral
theory anyway, and so will be ignored. The existence of a
valid, weak-coupling expansion, with all broken symmetries
explicitly treated, will be taken after the fact as the demon- 1=f DQ e Sawh, (29
stration that this preservation of the formal structure of the
partition function, with classically normalized fields, is a \ith
plausible step.

It will be convenient, from this point onward, to represent

. 2
Se as a matrix trace. In terms of renormalized fields, theSaux 1 d—TTr{ (Q—NE[C _SH(Z)R][QsR ¢|]) ]
5 :

defining action then becomes o wp s ¢l g
. (26)
S 1 (dr_ || ¢r|[¢r ] Pr|[Pr &)
7 on ?Tr| . ] R "+ 0 ® I Inserting Eq.(25) into the partition functior{20) gives a sum
0 b b action Sg; = Sg+ S, 4 of the form
. 2
n C —S||¢r|[¢r  ¢I]
g s C| ¢

SEr 1 dT
¢Rl[¢R ¢.]]_ 3
’ ~2ig0

¢R][¢R ¢|]+w2{¢R1[¢R &l

&) °L ¢
—S

|:¢R‘|[¢)R ¢I]+Q2] 27)
¢ '

—2J

Cc
S

c
Setting J=0 in the notation(except when it is implicitly

varied to equate expectation values of currgrgad defining

the renormalized constrairti=(wy/wg)Cs, the Euclidean Variation with respect td aboutJ=0 in Eq.(23), and shift
equation of motion from variation of E¢23) is of the auxiliary field of integration, gives

PR _ '
)} ¢.}:°' i@[c S<[({’R][¢R ¢']>=<Q>EQO, 29)
(24) S C

ol
Steady-state solutions, if such are found, hax@=0 by  ich defines the background fie@,. Weak-coupling MFT

definition. Further, the low-frequency dynamics of noneq”i'consists of splittingd=Q,+Q’, showing that fluctuations
may be ignored, and solving self-consistently Qg

librium solutions, such as the exponential growth away fromn,
a supercooled quiescent state, are driven by the coupling i : ' :

) ough its effect onp Green’s functions.
orders to traveling waves, and produéeC~sC. Therefore, g i
if the regulated constraint term in E@3) is expected to lead
to a uniform, linear-order perturbation to the free equations  IV. STATIONARY POINTS AND FLUCTUATIONS
of motion(24), as results from the idealize¥ifunctional, the Solutions forQ, will be found by assuming a given form

O L

coupling must scale ass|—go ass—0. This represents the - showing that it is consistent with the existence of stationary

physical observation that coupling to the stack remains oints, and then using the symmetriesSafto show that all

finite perturbation on TW behavior, even as the imposed, o veq solutions have the proposed form. It is shown in

driving gradient vanishes. The limit of fLee sound ivill arise Appendix A that all constan®, thus found couple only to

from go—0 at any fixeds. Though finiteg, requiresg—<  zero-frequency constraint components from the TW sector,

ats—0, this scaling will be shown to lead to regular, sen-sqo differences between the use ®fandC in Eq. (23) are

sible limits for all Green’s functions in the MFT calculation. jnvisible in MFT.

(This scaling will also be motivated by a modal decomposi-  stationary points will be assumed to lie in the same

tion of the constraint in Appendix A. SO(2) subgroup of SU(2) as the constraint matrix in Eq.
It is worth noting that, in steady staté,is theonly cor-  (14):

rection to the free Euclidean equations of motion. Since any

interaction term7C other thanC?, in Eq. (21), would give

other corrections from variation of the factd, it follows c S

that Eq.(23) is the most general functional enforcing the Q0=q{_s, ¢’

Carnot constraint and nothing else. Alternatively, it is the

most general functional consistent with the maximal set of

symmetries defining the engine, and thus must be the desiradith the definitionsc’=cos{, s'=sin{. The ¢ Green’s

phenomenological Lagrangian. function in Eq.(28) then takes the form

1 a.Cl ¢ s
+ —
7t 28

— 9%+ 2—2_(
[a, g gsC_1 s ¢

! !

: (29
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<BT][¢R ¢.]>:—_E :(%3&“7)_1&; Lﬁ.

To solve the self-consistency condition, one introducesvherew,=2mn/$dr for bosonic Euclidean fields.
the mode expansion The modal solution to Eq28) is then

$r(T)
b1(7)

cog{+x) sin({+x)

—sin({+x) cogl+tx)]
(30)

|(A) T, (31)

n

-s c’ s’
C, \/:wo n(w +(1)0) c +2\/§—qwﬁ S, !
- } %d Z Det ’ (32)
T
T
with the denominator given by 1 1
Go—z| ——=+—=|{1—iacot({—x)}. (40
Det=[ w2+ wi+ 2\/gqu,cos £~ )12 BlVe V-

+12 sin(é— )12, 33 After some algebra to simplify products of the various
: \/Eqw” =Xl 33 sines and cosines, Eq89) and (40) in Eq. (34) reduce to

Independent matrix coefficients of E@2) may be set equal the eigenvalue relation
as components of a vector:

C'] gwocos 2 . { 1 }
/ = —+— (1—iatan2y)
C _ s’ 4 1
—Vgwud: _o|720000G,| |- (39 o=
tan2y+ia —1|]|c’ a1
The two independent modal Green'’s functions appearing in B 1—iatan2y s'| @D

Eq. (34) are
Simultaneous solution fof andq is easiest in the limits
(35) of large |5q2|/w§, where the only self-consistent solutions
have|sin 2¢—x)|<1. Taylor expanding Eq(38) to leading
order in this small sine, irrespective of the root convention,
gives

1 wn(wﬁ+ w?)
G1= 2 2

Det '
é dr "

w JE—
2 Ber (36) igq’sin 2, x) )
a~ = .
fﬁ 2[w5—99°cos AL~ x)]

These are most conveniently evaluated in a low- Eigenvectors of Eq(41) with small /— x are only pos-
temperature limit, wherex,,—(¢d7/2m)[dw. Defining a  sible if tan2y= —ia, giving two solutions forf + y in terms
condensed notation for square roots that arise from the def g
terminant(33),

2

ok —gqexd = 2 (i— )], 37 z:+x~2x% and cos2(-x)=1-0(x?), (43)

and another for a combination of these that appears repeat-

edly, ™ 2 g

{Hx=5sgrixq’)—2x—; and cosZ{—x)=-1
gq

-
== (38) +0(x?). (44)
the Green’s functions evaluate to To solve_ forg, one notes thaj>>0 Iead_s to an imaginary
expectation value for the Green’s functi@@0) and a nega-
- \/:q 1 cos AL~ ) t@ve o* intergptio_n, whilgq2<0 gives a real Green’s func-
G——— [Zcos{g x)— —X , tion and positive interactiorflt may also be checked that the
4 \/_ \/— sin({—x) negative interaction is large, in maximal violation of the con-

(39 straint, while the positive solution is small, in maximal com-
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pliance with it. The physical interpretation of these relations 1.8
will be remarked upon below. gp =0.02
Starting from real-valued fieldég, ¢, , the hypercontour /
of steepest descents in EQ0) may be displaced into the P
complex plane, buthr, ¢, remain single-component fields. ; 7
Therefore, onlyg?>0 stationary points are found. With the

e i -
signs of cos 2(— y) from Eqs.(43) and(44), the unique real- = 1L 4
g solutions at large or smadj are then given by § e ,
g
_ &
\/E—q~wo*/l—92/4i g<2 and cosR—y)~1, -
(45)
Vgg~woVg?/4—1; g>2 and cosB{—x)~-1.
(46)

The relative signs of square roots are determined, together o . ) )
with the angle, by the requirement that Green’s functions FIG. 2. Coefficients of independent matrix terms in the current

. — 5 expectation values. Solid black is the off-diagonal compoffiunt-
gggg?uutg Esri]graonu(g)frgm(islr;strt]ﬁeia[:ineiequrjna}g;%ntt))c/)fcﬁlzj))s.ari—tgeaftetuations includej] dashed black is the diagonal component. Dotted
continuation back to real-time correlations. With the roots sg <> arego—0 limiting values given in Eq(51). Dash-dot line is

. . — . the sli limit of the tanh function in Eq61).
chosen, the Euclidean Green'’s functi@) for g<2 is eslinear fimit of the tanh function in Eq61)

|

PR
o

[#r ¢|]> ﬂ(— (2/g)° [_1 }
1

¢R [¢r o] w2 =11 <o" Jo—
] >—>—|?(3\/1—92/4[ 1} ! 2 Om

ol
_ —[ -1
_ (21g)? 1 Vi-4 2[ } .
+ oSG x)——= {_1 D sty 974
V1-g%4

(47 50

. . — . The importance of the way the positigg-solution vio-
while the solution forg>2 is lates the sign preferred by the constraint may now be seen.
The off-diagonal current in both Eq$49) and (50) has a
¢

! sign corresponding to the growing solution under Ekf),
[¢r  ¢i] wo [ — (2/g) 1 : . .
——i—| g—xs L but the diagonal magnitude decays thermally, as required for
V1-4/g®

a causal solution. That the constraint mitigates this decay is
seen by the decrease in magnitude of the diagonal term at
— 1 largeg.
\V1—4/g2 _
+sgrix) V1-4/g Ll D The parameteg selects in the same functional way be-
tween the two asymptotic solutions, at whatever valuggof
(48) However, g, remains as a dimensionless parameter deter-

mining the form of the solutions, and the continuation be-

Rotation back to real-time currents, via—id;, gives the  tween them. At smalyo, the transition ag=2 resembles the
solution forg<2: Curie point in the classical Landau description of ferromag-

netism[14], as seen in Fig. 2. Indeed, gg— 0, the current
br
g

Green'’s functions simplify to

B

wo( 2 — —
[ ¢']>ﬁ§(:@{ 1 —1}

9 ¢r

b
wqo 2 — _1 _
H7(:\/1—92/4{ D g<2

g -1

— -1 _
—>%(Sgr()()\/l—4/gzL D 9=2. (51)

[ r ¢.]>

_ (2/g)? [ 1}
+ T —_ y
dosarn) ——1

(49

and forg>2:
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However, at nonzergy, this transition is always regular, and tions ¢g— ¢, and¢gr— ¢r, ¢ — — ¢, for the two genera-

is not the critical point relevant to the TW onset transition.tors, respectively. Thus for real fields, an integral over fluc-

Rather, it quantifies the intuitive expectation that an insuffi-tuations reduces to the discrete sum over antipodal stationary

ciently strongly coupled stack, relative to the driving gradi- Points ats~0.

ent it is asked to impose, becomes unable to sustain coherent Letting 2¢ denote the elevation angle in §&), or

order. cos(¥)==1 in Z,, the effective potential may be estimated
The fact that the stationary pointd9) and (50) remain by inserting the mean current Green’s functi@®9) in the

finite and dependent on sgp) at y—0 (g—), where 2action(27), to yield
nonzero solutions must be degenerate, motivates consider-

L i ’ ’ 2
ation of fluctuations abou®, at small y. The degeneracy E . _E _9S"wo jg
and completeness of the stationary points is most easily stud- # [0:s]= h ls=o0 2 d7[1+cos26(r))].
ied by momentarily promotingpr,¢, to complex-valued (57

fields, and replacing the current dyadic above with
Because only the surface of fluctuatids$) is degenerate

br [dr @] br (o &F] at s=0, other modes are massive and can be ignored in
. —| . (520 evaluating the expectation value,
o o
(and similarly with all other dyadigs f DR eEszwosﬁdrcos(za)&q cog26)
Given any stationary solutio®,, a hypersurface of val- (Q)= 1
ues in theQ integral may be formed as f DR @ofdr cos(26)/2 -1 .
Q=RQyR’, (53 (59)
_by acting WiFh a rotatioR e SU(2). Decomposing generd) For complex fields an®R in SO(3), themeasure would
into the basis elements be
0 1 1 : 2 3 1 1
Q=al Al Uy r ) f DRzzwf d cog20), (59
(54) -
the action ofR in Eq. (53) may be written as while for real fields andR in Z,, it is simply
q' do é
DR= . 60
q2 =R qg ) (55) f cos(2)=-1 ( )
q° a5
The evaluation of Eq(58) with measurg60) is
for Re SO(3).
Meanwhile, a similar shift on fieldg, ¢* may be per- \/’Ewo 1 952w,
formed in the action(27), replacing (Q)= 5 sgn(x) _1 tan 5 dr| (61

* *
[d= ¢ ]RT+ O(R), (56 [the SO(3) case differs by a prefactor and higher-order
termg. Recognizing thags? sgn(x) =gox+ O(x>), the cur-
rent Green’s function to leading order in smgllbecomes

dr|r % ‘“LF{ b
2 ¢

and likewise with other dyadics. For constétthis shift of
¢ fields is a symmetry of the measure, and=at0, for each
zero-frequency fluctuation d in Eq. (53), it may be per- i< P VR
formed to yield an exact symmetry of the acti@?y). There- wo\ | &
fore, the complete spectrum of stationary pointsat0 is
the image ofQ, found above under S@). Nonzeros breaks

this degeneracy, and if tern®R) are ignored in Eq(56) at

low temperature, the remaining terms give the effective po s X . !
tential for R. phase-shift traveling waves lea@® invariant. However, be-

Returning now to the simpler casér,, real, SO(3) cause the Ieat;ling behavior of the engine is still c_onstrained
breaks to SO(2¥Z,. The SO(2) factor comes frorR' by th_e dynamics of frge phonons, the mterpretaugn of Eq.
=R, and leaves), invariant.(This is just the global sym- (6_52) In terr_n§ of classical real-time backgrounds is unam-
metry whose local form gives the Goldstone sector, becau iguous. Finite TW currents come from allowed solutions of
rotation of traveling waves in the spatial plane is equivalemt e form

1

4 -1

[ $r ¢|]>H_M

The auxiliary fieldQ does not directly correspond to in-
dividual backgroundspgr,¢,, because SO(2) rotations that

to offsetting the zero of timg.The residualZz, comes from
*+ 7r/2 rotations in either of the remaining SU(2) generators. PR _ cog wot) (63)
It is a symmetry of the action under the discrete transforma- b, sin(wet) |’
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up to choice of the zero of time. Matching the current expec- A final comment concerns the relation of the background
tation value from such a classical background to E&J), current(62) to the selection of a definite phase for classical
and recalling thafdr=7%/kgT, gives the scaling fox>0, background$63). In a ferromagnetic spin system, there are a
large number of microscopic spins, which need not be phase-
coherent to produce a background magnetization. Under
_ [Gox  [hwq coarse-graining, they are replaced with a classical magneti-
A~ 2 VkgT ®4  Zation vector, which is independent of those phases. In the
acoustic resonator, the current is still constructed explicitly
from wave solutions, but there is only one “spin.” Possible
V. DISCUSSION ground states all have expectation values which are linear
) ) . ] ~combinations of the two independent temporal mogks
Equation(64) predicts a universal scaling of the saturatlonfering by thew/2 phasg and any such state may be rotated
amplitude with driving gradient near the TW critical point, g the form (63) by appropriate choice of the zero of time.
in the sense that it follows from the most relevant terms in anrherefore, formation of a background current requires a sum
effective field theory of free phonons, perturbed by imperfectyyer independent ground states with definite phases. In clas-
Carnot self-amplification. The dependence Afon x is  sjcal correlations, these are engine cycles that spontaneously
manifestly nonanalytic a¢=0. Apart from the fact that the preak time-translation symmetry, and create long-range dy-

critical coupling is zero, this scaling is the same as that of theyamical correlations with the field configurations at any one
averaged magnetization of a ferromagnet in the Ginzburgfme.

Landau treatmenf14]: A~y for x>0 andA=0 other-
wise. The amplitude of the counterpropagating wave has ex- VI. CONCLUSIONS
actly the dual behavior, with respect toy.

The current(proportional toA?), which couples directly
to y, is analytic throughy=0, so the argument that, ap-

The foregoing derivation took as input a set of effective
actions from Ref[8], which have already been shown to lead

proaches a constant there implies saturation proportional t an intriguing connection between Carnot's theorem and

the classical gain times a fixed coupling strength. This ma); € _analytlc str_ucture d_enve(_j from f|n|te-tempe_rgture sum-
be in agreement with Ref2], but those data were not pre- mation of classical configurations. Through explicit formula-
sented to test this point ' tion, and then coarse-graining, of the sum, the same actions
Unfortunately, because even the scaling of the saturatioﬁndt an;llytlﬁ!ty havde ?e_et:n shov;{:\ tdo Iea? to ts.pont??k:aogs' sym-
amplitude near the critical point is difficult to measure, it is metry breaking and finite-ampiitude saturation of the driven

not clear how to assign more directly an experimental valueSound mode.

. o= . The notion that finite-temperature disorder could select
to the effective couplingo. In the phenomenological equa- g and then stabilize, such classical configurations
tions at the level of the local ideal gas, irreversibility is en- 014 be implausible excebt that exact degeneracy of or-
coded in conductivities that damp wave solutions or paraSitiThogonaI engine mc;des is strictly enforced by time-
cally reduce gain. In the reversible acti®@8), the only way

phenomenological constraint to the underlying ideal gas cons it de saturation is diffusion of the work extracted from

existing cycles, over the most accessible states, which should
: . . . . be visible as phase meandering dynamicfll§]. Near the

It is appealing to speculate that, in spite of its formal ijica| point, the saturation of such phase noise should be
relation to a “bare” coupling by a rescaling involvingo,  the mechanism that “melts” the dynamical long-range order
go is at most a function of stack properties and temperaturess 4 coherent engine cycle. The measurement and prediction
In that case, since, can be varied independently by varying of the spectra of phase noise in close neighborhoods of onset

resonator length., the saturation current would be propor- gre therefore important directions for experimental and the-
tional towo /KT, the ratio of the number of driving engine g etical future work.

cycles per unit time, to the thermal decay rate. It may also be
noted that agy— 0, fluctuations suppres®) at all s, and ACKNOWLEDGMENT
the free theory is recovered.
If the scaling regime wittA T predicted by Eq(64) could
be found experimentally, the effective coupling would then

ductivities appears as difficult to derive as to measure di
rectly.
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culty with this is that experiments are only currently feasibleWMOS'ENG'SG'

on the SW crit_ical point, as in Re[Z]_, and the symmetry- APPENDIX A: THE AVERAGED CONSTRAINT AND
based_qalculat_lons above are too limited to show Whether the SCALING OF THE COUPLING

TW critical point should have the same scaling. It is there-

fore of interest experimentally to pursue engines that can The idealizeds functional (15) is linear in the constraint
drive traveling waves, and theoretically, to extend the phaset enforces. When the regulatogs ,» are introduced in Eq.
transition interpretation from the relatively natural reversible(17), this linear functional is replaced with a quadratic inter-
case, to include the SW cycle as well. action termS{"Y/#, in Eq. (18). In order for the regulator to
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enforce vanishing of the low-frequency componentsCgf  strongly coupled interactions would all be standing waves
uniformly ass— 0, it should effectively lead to a linear con- and counter propagating traveling waves, which are not
straint term withs-invariant weight. A mode expansion of present in the time-averaged constraint.

the interaction will be used here to show that this physical To see that the assumption of the averaged constraint in
condition requires scaling of the assumed “bare” couplingthe definitions is consistent with use of the local constraint in
with s. The result will then be shown to admit substitution of MFT calculations, it is then convenient to return to the mode
the local constraint for the derivation of mean-field back-e€xpansion31), in terms of which

grounds, if the effective coupling is corrected by an addi-

#r
b

[d’R d’l] n+k

n

tional scale factor 172

The derivation is carried out in the renormalized fields of Ck= ( o fﬁ dT) |R E oy,
Eqg. (22), and the corresponding constraihof Eq. (24), to

match the bulk of the main text. Translation from the bare
guantities of Sec. lll is by simple rescaling. It is also conve-
nient at this point to denote the rotation matrix

(A5)

Even though it is not time local, the constraint acti@w)
can be canceled explicitly by defining a two-index auxiliary

c -s field,
=R;.
s ¢ ~
Qn,n’kaQn,n’fk
Only ¢ bilinears, near-diagonal in a TW basis, contribute to
the time-averaged constraifit so it is useful to expang in " lgsz/woR ® Pr| [P Sl sk
TW mode coefficients, wofdr ST ¢, . '
¢R(T 1’2 onl 1] (AB)
(O] § dr 7 —j e'“’”T
and replacing the actiof26) with the expansion
¢: 1 —iw,T
+7 | € ' (Al) S<’:1UX

1 ~ ~
= 2 2 THQun-Qurneids (A7)

. . . o 2 r k'small
in favor of the generic expansid1). Positivew, represent @o nn’ XS

analytic traveling waves, and negatiwg, are antianalytic.

Modes ofC will be normalized as in Eqg31) and (Al): where finitew has been represented by truncating the range
of k summation. The sum of interaction and auxiliary field
-1z : actions is then
C(n=|wo ®dr| D Cyex (A2)
Sant SE' 1

With these definitions, == > > Tr

h Zwé k'small y7 p
—-1/2
Wy 7. wnS
Ckz(woﬂng) 2¢¢n k( Y- 2n>

X [ Qn,n'—an’,n+k

(A3)
The modes of the local and time-averaged constraints relate gswr/wo
- — - — +2\/———CQuw n+kstn
asC~C for || <o~ wo/Q andC~0 for |wy|=w. Scal- wofdr
ing of bilinears in¢ is determined at leading o@er by the &
free finite-temperature theory, so the magnitude,ofs de- x[ R} [$r qu‘“']_ (A8)
termined by the two frequency coefficients that appearﬂ Eq. ¢,

(A3). The left-hand term in parentheses scale§m@$=< w . .
~wos, and the right-hand term scales explicitly ags. ~ Equation(A7) cannot represent any product of time-local
Therefore,C is O(s), and the coefficient o€, in the mode ~ fi€lds, as it must cancel a product of time-averaged con-
int straints. However, assuming a time-independent mean-field
expansion ofSt/#, : . ;
background remains consistent, and may be applied to modes

= (A6) as
(ngR/wo) éd 2 122 ngRC—k)Ck, (Ad)
20p k “o wedr \ 12
. . . . Qnn—k= ———— Qoén,n’—k"_Q/n,n’—k-
remains nontrivial and uniform as—0, only if gg|s|
—0Bo- k'small n
Though this scaling appears singulaspecially when ap- (A9)

plied to the local constraint for MFT calculationss long as
0g,0 remains small, the weak-coupling expansion is valid for
all interacting fluctuations in the original definition. The
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To zero order in fluctuations, the terms of E@\8) that

survive are
Sut St 1
. e _z—ngr[(wo fﬁ dT)Qg
+2\/:Q0R 2 o, ‘Z'l? [¢r  ¢1]-n
+0(Q), (A10)

where the sum om is unrestricted but a new coupling has
been defined to absorb a redundant sunkon

g

wWR ksmall

O~ —

(1)02
n

~Ge,. 1 (AL1)

whereA is the frequency cutoff defining the effective theory.

If the local constraint had been assumed from the beginning,

by raisingw so that¥, nar— =, g would manifestly return

to the classically renormalized, bare coupImg Removmg the

classical scale factor to identify the couplugg Jwol wg
that appears in Eq21), one recovergg= ng/A

The relation to the time-local Hubbard-Stratonovitch field
of Sec. lll may be seen by taking the mode expansion

ERIC SMITH

PRE 60

shifting indicesk=n—m—k’ to produce the tensor form,

9§, ([¢>R ol DZ
— T
2wg ¢|
. PRl [dr  &ilk-n
2w093d7' mznk Trl onRs ¢, )
<[iwor [4r ¢>.]km)]’ AL
Hm

and offsetting a time-locaD by all modes ofp as the modes
of the field appearing squared in E6),

¢r
o

[¢r

m

¢I]k—m

I3
Q=Q«+ MRS%((%

(A15)

gives the equation corresponding to E48):

Sanct SE 1 g
—12 . —=—= 2, Tr _kt2\/—QR ®
Q=00 pdr| T Qe=QurQ!(n). h 2 2 T QQr 2V g Qe o
k
(A12) y Pr| [pr  &ilk-n (AL6)
Starting from the expansion for the local interaction term, b, '
but with a rescaled coupling,
9 dr( [#r 4’!] r ) The MFT condition(A9) for the constant mode gives the
2wq °| &, relative normalizationQ,= (wo$d7)¥?Qqdk+ Q. , leading
— again to Eq.(A10). This sequence of mode expansions cor-
__ 9 o [r  dili-nRs ¢R} responds to the manipulations of the everywhere-local action
2wggﬁd7 mon K’ " hl, (21) carried out in Sec. Ill. Though it is not compatilds a
& definition with the scaling ofg required to model the TW
X iwm[¢R d"]*k’*mRs R ) (A13)  engine, the resulting MFT is the same as that obtained from
bl the valid weak-coupling expansion induced Gy
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